CO2 capture from air, flue gas, and other dilute gas mixtures
The group has played a leading role in the development of materials and processes for the extraction of CO2 from the ambient air, or direct air capture (DAC). The work targets fundamental issues in adsorption science as well as novel, scalable processes. A long-standing collaboration with Global Thermostat LLC has focused on material and process development. Details of our work on carbon capture can be found here.
196. S. A. Didas, S. Choi, W. Chaikittisilp, C. W. Jones, “Amine-Oxide Hybrid Materials for CO2 Capture from Ambient Air.” Acc. Chem. Res.(2015) 48, 2680-2687.
225. E. S. Sanz-Pérez, C. R. Murdock, S. A. Didas, C. W. Jones, “Direct Capture of CO2from Ambient Air.” Chem. Rev. (2016) 116, 11840-11876
The group has also made significant contributions to the use of solid, amine-based adsorbents for CO2 or H2S capture from dilute gases such flue gases derived from fossil fuel combustion or biogas from landfills.
110. P. Bollini, S. A. Didas, C. W. Jones, “Amine-Oxide Hybrid Materials for Acid Gas Separations.” J. Mater. Chem. (2011) 21, 15100-15120.
192. Y. Fan, F. Rezaei, Y. Labreche, R. P. Lively, W. J. Koros, C. W. Jones, “Stability of Amine-based Hollow Fiber CO2 Adsorbents in the Presence of NO and SO2.” Fuel (2015) 160, 153-164.
296. C. N. Okonkwo, J. J. Lee, A. De Vylder, Y. Chiang, J. W. Thybaut, C. W. Jones,” Selective Removal of Hydrogen Sulfide from Simulated Biogas Streams using Sterically Hindered Amine Adsorbents.” Chem. Eng. J. (2020) 381, 540-546.
Amine adsorbents in targeted separations (other acid gases, VOCs, etc.)
Leveraging the group’s longstanding expertise in adsorbents for CO2 capture, we have developed related materials for separation of specific compounds from bio-oils, mercaptans from natural gas, as well as VOCs from breathing air, amongst other applications.
99. J. H. Drese, A. Talley, C. W. Jones, “Aminosilica Materials as Adsorbents for the Selective Removal of Aldehydes and Ketones from Simulated Bio-oil.” ChemSusChem (2011) 4, 379-385.
177. A. Nomura, C.W. Jones, “Airborne Aldehyde Abatement by Latex Coatings Containing Amine-Functionalized Porous Silicas.” Ind. Eng. Chem. Res. (2015) 54, 263-271.
Catalytic conversion of light alkanes in shale gas
The conversions of light alkanes to alkenes is important for the chemical, fuel, and related industries. Depending on the desired product, metal, oxide, or acid catalysts can be used. The oxidative or nonoxidative dehydrogenation of alkanes for “on-purpose” production of light alkenes (ethylene and propylene), represents an attractive route to utilize readily available, cheap hydrocarbon resources. We have focused on development of catalysts based on earth abundant metals for the endothermic dehydrogenation of propane, and steam-cracking of ethane, amongst other applications.
224. S. Tan, B. Hu, W.-G. Kim, S. H. Pang, J. S. Moore, Y. Liu, R. S. Dixit, J. G. Pendergast, D. S. Sholl, S. Nair, C. W. Jones, “Propane Dehydrogenation over Alumina-supported Iron/Phosphorous Catalysts: Structural Evolution of Iron Species Leading to High Activity and Propylene Selectivity.” ACS Catal. (2016) 6, 5673-5683.
251. W.-G. Kim, J. So, S. W. Choi, Y. Liu, R. S. Dixit, C. Sievers, D. S. Sholl, S. Nair, C. W. Jones, “Hierarchical Ga-MFI Catalysts for Propane Dehydrogenation.” Chem. Mater. (2017) 29, 7213-7222.
Catalytic conversion of biomass-derived compounds
The group has worked extensively on the conversion of lignocellulosic biomass, often in collaboration with the Renewable Bioproducts Institute (RBI) at Georgia Tech. Early studies examined the fractionation of woody biomass in aqueous and ionic liquid media. The hydrogenation of lignin-derived species has also been a focus, with recent efforts aimed at the selective hydrogenation of sugar-derived furanic compounds using non-precious metal catalysts. Most recently, we have developed renewable acid/base catalysts based on cellulosic materials.
252. T. P. Sulmonetti, B. Hu, S. Lee, P. K. Agrawal, C. W. Jones, “Reduced Cu-Co-Al Mixed Metal Oxides for the Ring-Opening of Furfuryl Alcohol to Produce Renewable Diols.” ACS Sustain. Chem. Eng. (2017) 5, 8959-8969
280. N. C. Ellebracht, C. W. Jones,” Optimized Cellulose Nanocrystal Organocatalysts Outperform Silica-supported Analogues: Cooperativity, Selectivity, and Bifunctionality in Acid–Base Aldol Condensation Reactions.” ACS Catal. (2019) 9, 3266-3277.
Catalytic conversion of CO2
In addition to extensive studies on CO2 separation, the group also works on thermal catalytic conversion of CO2. Recent projects have focused on tandem hydrogenation – acid coupling to produce aromatics directly from CO2 as well as design of catalytic sorbents for CO2 methanation.
- “Direct Aromatization of CO2 via Combined CO2 Hydrogenation and Zeolite-based Acid Catalysis.” I. Nezam, W. Zhou, G. S. Gusmão, M. J. Realff, Y. Wang, A. J. Medford, C. W. Jones, Journal of CO2 Utilization (2021) 45, 101405.
- “Integrated Capture and Conversion of CO2into Methane Using NaNO3/MgO + Ru/Al2O3as a Catalytic Sorbent.” S. J. Park, M. P. Bukhovko, C. W. Jones, Chemical Engineering Journal (2021), 420, 130369.
Engineering molecular catalysts for specific applications in organic synthesis
Since the earliest days, a major focus of research in the group has been design and understanding of supported molecular catalysts. Two major focal areas are on (i) cooperative and cascade catalysis using multi-functional supported molecular catalysts, in collaboration with chemists at NYU and computational scientists in MSE at GT, and (ii) supported metal complex catalysts for C-H activation. The latter activity is part of Emory University’s Center for Catalytic C-H Functionalization, and involves close collaborations with organic chemists. Specific goals include enhancing catalyst TON or facilitating C-H functionalization in flow.
187. E.G. Moschetta, S. Negretti, K.M. Chepiga, N.A. Brunelli, Y. Labreche, Y. Feng, F. Rezaei, R.P. Lively, W.J. Koros, H.M.L Davies, C.W. Jones, “Composite Polymer/Oxide Hollow Fiber Contactors: Versatile and Scalable Flow Reactor for Heterogeneous Catalytic Reactions in Organic Synthesis.” Angew. Chem. Int. Ed.(2015) 54, 6470-6474
207. L.-C. Lee, J. He, J.-Q. Yu, C. W. Jones, “Functionalized Polymer-supported Pyridine Ligands for Palladium-catalyzed C(sp3)–H Arylation.” ACS Catal.(2016) 6, 5245-5250
263. C.-J. Yoo, D. Rackl, W. Liu, C. B. Hoyt, B. Pimentel, R. P. Lively, H. M. L. Davies, C. W. Jones,” Dirhodium Immobilized Hollow Fiber Flow Reactor for Scalable and Sustainable C-H Functionalization in Continuous Flow.” Angew. Chem. Int. Ed. (2018) 57, 10923-10927
326. “Copper-catalyzed Aerobic Oxidation of Hydrazone in a Three-phase Packed Bed Reactor.” T. A. Hatridge, B. Wei, H. M. L. Davies, C. W. Jones, Organic Process Research Development (2021) in press.
Membrane separations
With broad expertise in zeolites, MOFs and organic-functionalized porous oxides, we often collaborate with other groups that focus on membrane separations on an array of projects. Projects with Koros, Sholl, Nair and Lively have been explored over the years, targeting gas separations, pervaporation and organic/aqueous separations. Generally speaking, the group does not lead membrane projects, though we are involved in numerous collaborations on the topic.
78. T.-H Bae, J. Liu, J. S. Lee, W. J. Koros, C. W. Jones, S. Nair, “Facile High-Yield Solvothermal Deposition of Inorganic Nanostructures on Zeolite Crystals for Mixed Matrix Membrane Fabrication.” J. Am. Chem. Soc. (2009) 131, 14662-14663.
95. T.H. Bae, J. S. Lee, W. J. Koros, C. W. Jones, S. Nair, “High-Performance Gas Separation Membrane Containing Sub-Micron Metal Organic Framework Crystals.” Angew. Chem. Int. Ed. (2010) 49, 9863-9866.
128. A. J. Brown, J. R. Johnson, W. J. Koros, C. W. Jones, S. Nair, “Continuous Polycrystalline Zeolitic Imidazolate Framework-90 (ZIF-90) Membranes on Polymeric Hollow Fibers.” Angew. Chem. Int. Ed. (2012) 147, 10767-10770.
163. A. J. Brown, N. A. Brunelli, K. Eum, F. Rashidi, J. R. Johnson, W. J. Koros, C. W. Jones, S. Nair, “Interfacial Microfluidic Processing of Metal-Organic Framework Hollow Fiber Membranes.” Science (2014) 345, 72-75.
215. K. Eum, A. Rownaghi, D. Choi, R. R. Bhave, C. W. Jones, S. Nair, “Fluidic Processing of High-Performance ZIF-8 Membranes on Polymeric Hollow Fibers: Mechanistic Insights and Microstructure Control.” Adv. Funct. Mater. (2016) 26, 5011-5018.